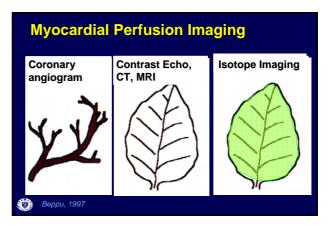

MCE for Perfusion Myocardial Viability

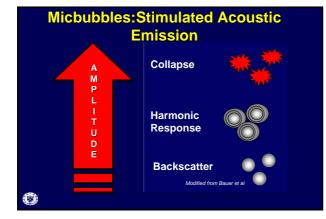

Namsik Chung, M.D., Ph.D. Cardiology Division Yonsei Cardiovascular Center Yonsei University Seoul, Korea

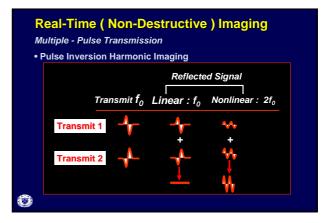
Methods to Enhance Echo from **Blood in the Microvasculature**

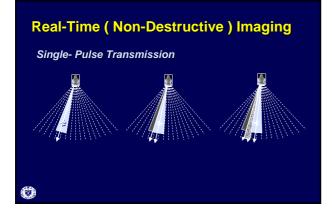
1. Contrast Agents

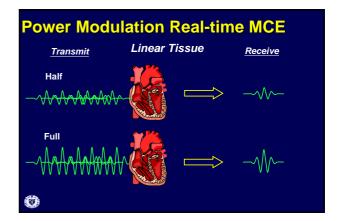
Ö

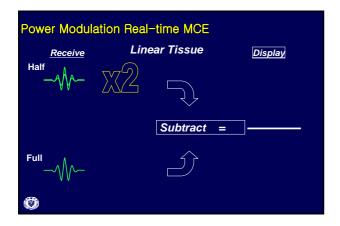
2. Imaging Technologies and Techniques

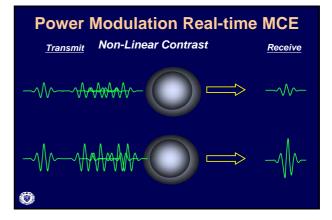

Newer Microbubbles

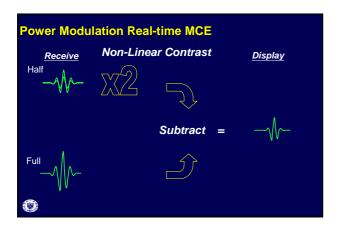


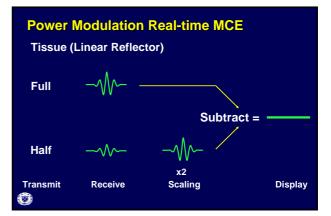

hexafluoride Polymer coated

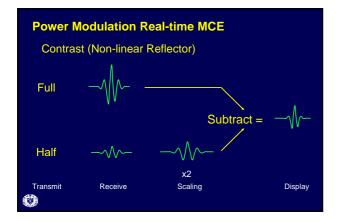

Fluorocarbon or

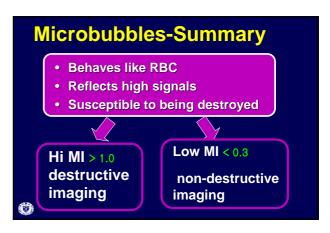

- •High density Low diffusivity
- •Low saturation constant



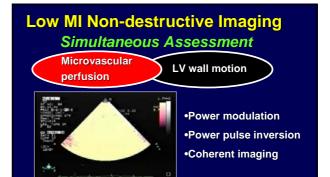


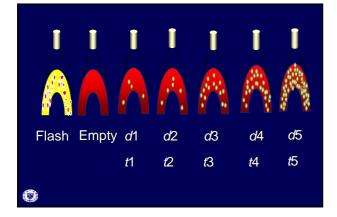


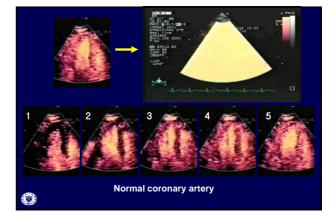


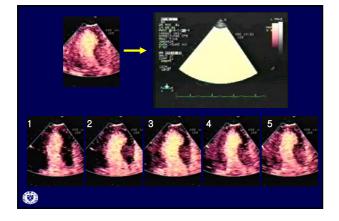


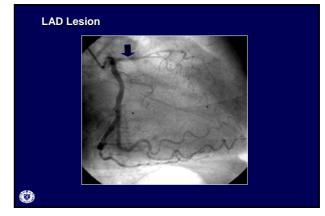
High MI Bubble-Destructive Imaging

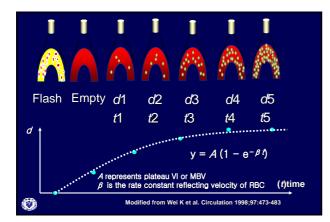


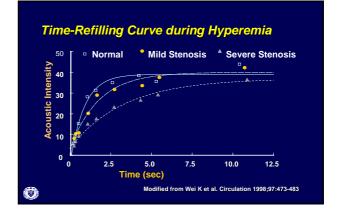

Ö

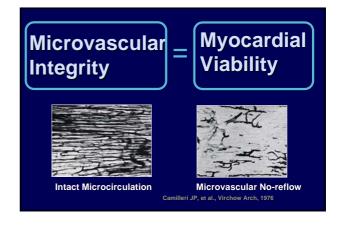

- **<u>Pitfalls</u>** 1. Respiratory variation lose regional comparability
- 2. Inability to evaluate wall motion abnormality
- 3. Tissue motion artifacts

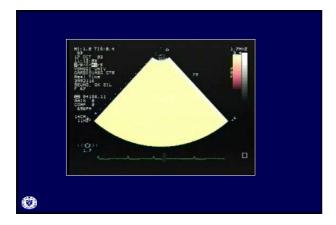

۲

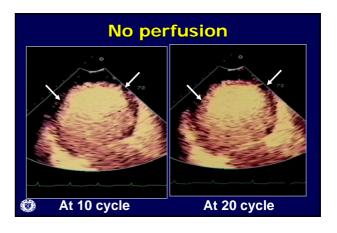

4. Blooming artifacts

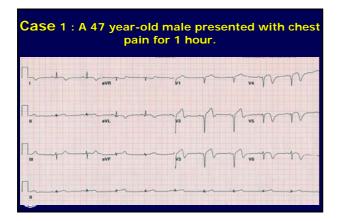


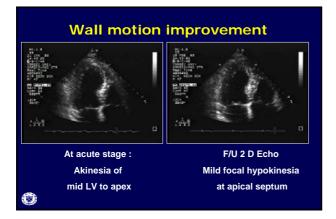


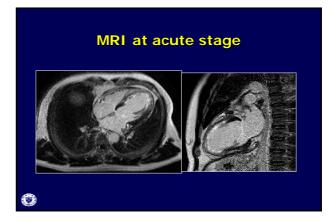


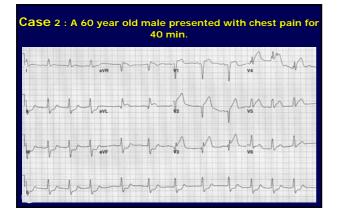




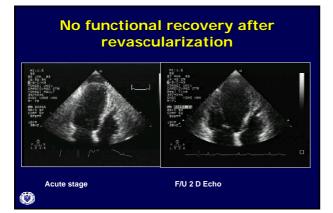


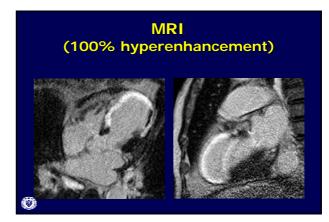


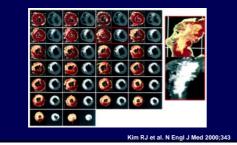












CeMRI-derived extent of delayed enhancement (DE) accurately represent transmural extent of infarction (TEI)

Study 1

Quantitative MCE and contrast enhanced MRI in prediction of myocardial viability after primary PCI in AMI : comparative study

YUMC data

Methods (1)

- 20 patients with AMI who were successfully revascularized by primary PCI (age : 59±10years, 16 males)
- Real time MCE and MRI within 7 days after revascularization (LAD:12, LCx:3, RCA:5)

Methods (2)

- Myocardial perfusion by MCE
- Quantitative analysis of rate of microbubble velocity $(y = A (1 e \beta t))$
- Quantitative measurement of transmural delayed hyperenhancement on MRI
- Improvement in contractile function
 2D Echo initial & 12 weeks later

O

Quantitative assessme Rate of micro	nt of myocardi bubble veloci		by MCE
	Bet	а	
	Beta < 0.4	Beta ≥ 0.4	total
Wall motion no improve	21 70.0%	9 30.0%	30 100%
Wall motion improve	4 11.8%	30 88.2%	34 100%
Total	25 39.1%	39 60.9%	64 100%
Sensitivi	ty : 88.2%		
Specifici	ty:70.0%		
Positive	predictive valu	e : 84%	
Negative	predictive val	ue : 76.9%	

	М	MRI	
	hyperenhancement ≥ 50%	hyperenhancement < 50%	total
Wall motion improvement	53	10	63
(-)	84.1%	15.9%	100%
Wall motion improvement	16	37	53
(+)	30.2%	69.8%	100%
Total	69	47	64
	59.5%	40.5%	100%
Sen:	sitivity : 69.8%		
Spe	cificity : 84.1%		

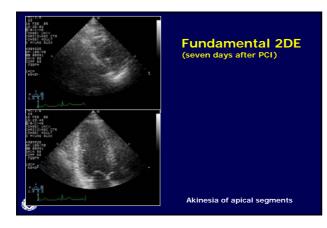
Conclusion

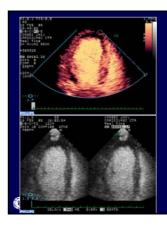
- MRI showed better specificity (sensitivity 69.8%, specificity 84.1%) while MCE showed better sensitivity (sensitivity 88.2%, specificity 70%).
- Combining of quantitative MCE and MRI provided the best diagnostic characteristics, with a sensitivity of 88.2%, a specificity of 84.1% in the prediction of myocardial viability following AMI

Study 2

Prediction of Transmural Extent of Infarction and Wall Motion Recovery With MCE-Derived MBVF and Index of MBF

: Comparison With Contrast-Enhanced MRI

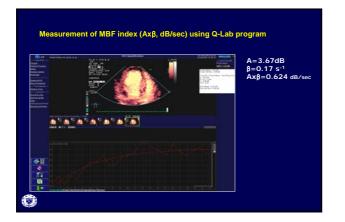

E Choi, N Chung et al JASE 2006

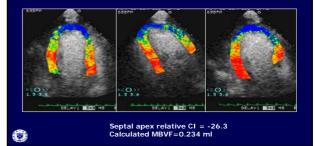

Methods 1. Low MI (<0.2) MCE

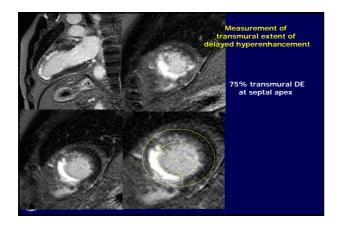
1

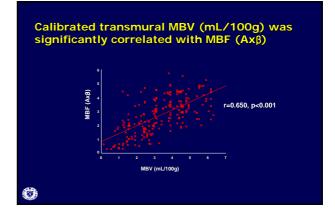
- 998; 97:473-83
- Real time power modulation mode (DR :20 dB)
- MBF assessment using replenishment curve which fit $y=A(1-e^{-\beta t})$
- Analysis with Q-Lab [™] (Philips, Bothel, USA)
- 2. High MI (>1.0) MCE
- 4:43:1799-806
- Ultraharmonic mode (DR:60dB)
- 1:5 triggered image
- (end-systole, peak T wave gated) - MBV (mL/100g)=100x10^{calil}
- Analysis with VoluMap-445[™] (YD Ltd, Ikoma, Japan)

Case, M/53, Ant. AMI Pre PCI After PCI Ø




MCE (seven days after PCI)


Low MI (0.1), real-time power modulation mode

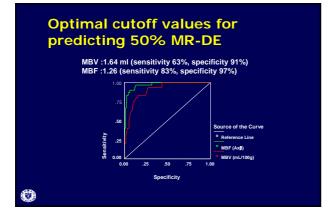

High MI (1.5) ultraharmonic mode

Measurement of relative CI and MBVF (ml/100g myocardium) using Volu-Map program

Segments : subdivided into three groups

- Group I : normokinetic without DE (n=80)
- Group II : 0-50% DE (n=94)

Ô


- Group III :51-100% DE (n=30).

Comparison between groups

	Group I (n=80)	Group II (n=94)	Group III (n=30)
% MR-DE	0	18.83±15.68*	70.83±10.51**
CCI (dB)	-13.9±1.3	-15.6±2.0 *	-18.9±3.0 **
MBV (mg/100g)	4.30±1.11	3.05±1.24 *	1.54±0.80 **
А	9.73±1.01	8.87±2.32 *	5.87±2.02 **
β	0.37±0.07	0.28±0.92 *	0.13±0.04 **
Αχβ	3.63±0.79	2.54±1.07 *	0.86±0.50 **

CCI : calibrated contrast intensity

Future wall motion recovery and parameters of ceMRI and MCE

	Segments in Risk A	Segments in Risk Area (n=143)		
	Persistent dysfunctional (n=110)	Recovered (n=33)	р	
% DE	69.2 ± 21.6	25.9 ± 23.7	<0.01	
Relative CI (dB)	-18.9 ± 3.8	-16.6 ± 2.9	<0.01	
MBVF (ml/100g)	1.41 ± 1.53	2.67 ± 1.68	<0.01	
Axβ (dB/sec)	1.19 ± 0.84	2.41 ± 1.25	<0.01	
2				

Conclusion

• MCE-derived transmural MBVF can be an effective predictor of transmural extent of infarct and future contractile improvement in the reperfused myocardial infarction.

Ø

Thanks for Your Attention

