

2006 SCMR Asia Chapter 2006 SCMR Asia Chapter CT for Coronary atherosclerosis Coronary Calcium Scoring Coronary Calcium Scoring Clinical impact - EBCT method (since 1990) - Relatively large data Evidence of coronary ٠ - No contrast agent / low radiation atherosclerosis - Indirect assessment of noncalcified plaque Correlates with total • Coronary CT angiography plaque burden - New technique Possible indicator for - Lumen + wall change future myocardial - Contrast-enhanced / high radiation

Inter	pretation	of Ca. S	Score
Step I		Step II	
EBCT Score (Agatston Method)	Interpretation	Age- and sex- specific (score percentiles)	Risk Assessment
0-11	No/minimal plaque	0-25	Small risk
11-100	Some plaque present	26-50	Moderate risk
111-400	Moderate plaque burden	51-75	Increased risk
401-1000	Severe plaque burden	75-90	High risk
> 1000	Very severe plaque burden	> 90	Very high risk

MR Asia Chap Pro	gnost		ue of C Studie	Ca. Sco s	ire:
Author	No.	F/U (mo)	CAC in pts with events	CAC in pts without events	RR
Arad	1177	43	764 ± 935	135 ± 432	14.3
Raggi	632	32	303 ± 441	92 ± 240	12.5
Park	967	77	395 ± 571	195 ± 378	4.4- 7.5

006 SCMR Asia Chapter

- 5-y risk-adjusted survival was 95% for score > 1,000, 99% for score < 10.
- Risk-adjusted relative risk value for CAC, compared with CAC < 10 : 1.7, 2.5, 4.0 for >100, >400, >1000

Shaw et al. Radiology 2003;228:826-833

2006 SCMR Asia Chapte ACC/AHA Consensus (2000) A negative EBCT test makes the presence of atherosclerotic plaque, including unstable plaque, very unlikely. A negative test is highly unlikely in the presence of significant luminal obstructive disease. Negative tests occur in the majority of patients who have angiographically normal coronary arteries. A negative test may be consistent with a low risk of a cardiovascular event in the next 2 to 5 years.

- 5. A positive EBCT confirms the presence of a coronary atherosclerotic plaque.
- The greater the amount of calcium, the greater the likelihood of occlusive CAD, but there is not a 1-to-1 relationship, and findings may not be site specific.
- The total amount of calcium correlates best with the total amount of atherosclerotic plaque, although the true "plaque burden" is underestimated.
- 8. A high calcium score may be consistent with moderate to high risk of a cardiovascular event within the next 2 to 5 years.

2006 SCMR Asia Chapter

Suggested Guidelines for CAC Scoring (Partner's HealthCare System 2002)

- Not recommended for asymptomatic low-risk subjects
- · Positive test might be valuable in determining actual risk (apparently intermediate \rightarrow actually high risk)

Vulnerable Plaque

- By Little (1990) and Muller (1992)
- Lesion prone to thrombosis

2006 SCMR Asia Chapter

- Sudden thrombotic occlusion (Falk, Circulation, 1995) – Often occurs in area of moderate pre-existing
 - atherosclerosis
 Plaque progression: result of episodic thrombosis and organization
 - Risk of plaque rupture correlates only weakly with the degree of stenosis
- Identifying a plaque prone to thrombosis will predict the majority of AMI and sudden death.

Seo JB 2004 KRS, RSNA

2006 SCMR Asia Chapter					
Results					
 Assessable: 230/270 segments 25 segment: poor CT image quality 15 segment: failure of IVUS IVUS: 22 lipid cores (13 with stenosis, 9 without) 					
Detection of hypoechoic (lipid-rich) plaque					
	Reader 1	Reader	2		
Sensitivity	73%	68%			
Specificity	92%	90%			
Interobserver agreement: kappa 0.608					
* Ten concordant false positive lesions: IVUS misdiagnosis? Seo JB 2004 KRS, RSNA					

CT Detection of Lipid Core					
	Prevalence	Sensi	tivity	Speci	ficity
		R1	R 2	R1 R	2
All seg.	10% (22/230)	73%	68%	92%	90%
Stenotic seg.	31% (13/42)	85	69	69	76
Nonstenotic seg.	5% (9/188)	56	67	96	92
Left main	7% (2/30)	100	100	89	86
LAD segments	10% (9/87)	100	78	92	86
LCx segments	8% (4/50)	25	50	89	94
RCA segments	11% (7/63)	57	57	95	95

Conclusion

- When compared with IVUS, ECG-gated CT with dedicated postprocessing method showed reasonably high accuracy and interobserver agreement in detecting lipid-rich plaque.
- ECG-gated cardiac CT may be used as a noninvasive tool to detect vulnerable, lipid-rich, necrotic core in coronary arterial wall.

2005 제 49회 순환기학회 Cardiac Imaging

Plaque Characterization

- Leber AW, JACC, 2004
 37 patient with HR < 65/min
 - 58 vessels analyzable on MDCT / 68 IVUS

IVUS	Accuracy	CT Number (HU)
Hypoechoic (lipid-rich)	62/80 (78%)	49 ± 22
Hyperechoic (fibrous)	87/112 (78%)	91 ± 22
Calcified	150/158 (95%) 391 ± 156
Exclude plaque	484/525 (92%	6)

2005 初 49別 とき기억회 Cardiac Imaging 2006 SCMR As Quar Coro A Con Corona • Leb • IVU ves Plaque Quantification Plaque CS Lumen CS EEM CSA % vessel obstructio

2006 SCMR Asia Chapter

- · Non-invasive / repeated study
- Lumen + wall
- Objective assessment
 Software dependent
- Ongoing technical improvement

